Packages

p

info.kwarc.mmt.lf

externals

package externals

Ordering
  1. Alphabetic
Visibility
  1. Public
  2. All

Type Members

  1. abstract class ExternalConditionRule extends CheckingRule

    the abstract type of rules that realize a side condition for a particular key

Value Members

  1. object CallByValue

    helper object for identifier

  2. object EqualityLock extends ExtensionalityRule

    K |- Unlock(s) = Unlock(t): T ---> |- s = t : LockType(K,T)

  3. object InferLockTerm extends InferenceRule

    K |- t:T ---> |- LockTerm(K,t) : LockType(K,T)

  4. object InferLockType extends InferenceRule

    K |- T:type ---> |- LockType(K,T): type

  5. object InferUnlock extends InferenceRule

    G |- t: LockType(K,T) and K=Key(p,n,s) in G and p(a,b) ---> U: T

  6. object Key extends TernaryConstantScala

    convenience operator to bundle k,a,b into a single object Key(k, a, b)

  7. object LockTerm extends FouraryConstantScala

    LockTerm(k,a,b,t) is the term \mathcal{L}^k_{a,b}[t] from the paper for a term t We also write LockTerm(K,t) if K=Key(k,a,b) is known.

  8. object LockType extends FouraryConstantScala

    LockType(k,a,b,T) is the term \mathcal{L}^k_{a,b}[T] from the paper for a type T We also write LockType(K,T) if K=Key(k,a,b) is known.

  9. object Locks

    helper objects for identifiers

  10. object TypingLock extends TypingRule

    K |- Unlock(t): T ---> |- LockType(K,T)

  11. object Unlock extends UnaryConstantScala

    Unlock(t) is the term \mathcal{U}^k_{a,b}[T] from the paper for a terms t: LockType(k,a,b,T) The additional arguments used in the paper are not actually needed in the internal syntax.

  12. object UnlockLock extends ComputationRule

    Unlock(LockTerm(K,t) = t

  13. object ValRule extends ExternalConditionRule

    Key(Val, tm, tp) checks whether tm is Val N is an abstraction of of the form free(_)

Ungrouped