
MMT Internals
An Ongoing Tutorial

Florian Rabe, Jonas Betzendahl
(Illustrations by Katja Berčič)

February 28, 2019

Contents

1 Introduction 1

2 Overview (2018-11-28/29) 2
2.1 Structural Elements and Objects . 2
2.2 Algorithms . 2

2.2.1 Parsing . 3
2.2.2 Type Checking . 4
2.2.3 Simplification . 4

3 Terms (2019-01-31) 5

1 Introduction

1

2 Overview (2018-11-28/29)

Full session on YouTube: Part 1, Part 2.

2.1 Structural Elements and Objects

Further reading: Structure

All MMT content is divided into the structure level and the object level (compare Figure 1). The struc-
ture level is a tree of so-called structural elements (see the corresponding class, StructuralElement)
that all have a path (Documents have a DPath, Modules have an MPath and Declarations have a
GlobalName; the latter two also have a name, which is a LocalName).
The general idea is that documents (everything from a repository to a directory to a file to a section
within a file can be viewed as a document here) contain lists of modules and modules contain lists of
declarations. Both modules and documents can also contain other modules or documents respectively.
Narrative structure of documents (what files are in what directories etc.) does not carry any semantics.
For this, modules should be used instead.

MMT Content

Object LevelStructure Level

NotationTermSubstitutionContextDocument Module Declaration

Figure 1: Overview of content structure. Nodes in this tree generally correspond to Scala classes.

The prominent examples for modules would be theories or views and for declarations constants. These
in terms have components that are objects. For example, theories have metatheories, views have
domains and codomains, and constants have any number of types, definition and notations, which are
all terms.
The following is a good first overview about what forms MMT terms take (for more on this, also see
Section 3, where the object level is discussed in more detail):

• OMS
(OpenMath Symbol, refers to a constant)

• OMA
(OpenMath Application, takes operator/function and children/arguments)

• OMBIND
(OpenMath Binder, binds variables)

• OMV
(OpenMath Variable)

• OMLIT
(OpenMath Literals)

2.2 Algorithms

MMT’s architecture has three phases. These correspond most interesting and relevant algorithms
MMT offers, which will we be discussing next. The three phases are:

• Lexing / Parsing
(no real distinction, we’ll refer to this as just “parsing” from now on)

2

https://www.youtube.com/watch?v=PUKjQbbeqdQ
https://www.youtube.com/watch?v=yh_vwVm8Szc
https://uniformal.github.io/doc/language/
https://uniformal.github.io/apidoc/info/kwarc/mmt/api/StructuralElement.html
https://uniformal.github.io/doc/language/modules.html#theories
https://uniformal.github.io/doc/language/modules.html#views
https://uniformal.github.io/doc/language/declarations.html#constants

• Type Checking
(this includes type inference and type reconstruction)

• Simplification
(this also includes elaboration)

Each of these phases is called on each declaration separately and the first declaration is entirely
processed (through all three phases) before the second declaration is touched. It is not the case that
MMT first parses everything, then typechecks everything and finally simplifies everything. This is so
because the successful processing of a later declaration might depend on the complete result of an
earlier declaration (imagine a notation being used that was only introduced earlier in the file).

The code equivalent to these algorithms are also separated along the same divide of object- and
structure-level. So the MMT API contains Scala classes like StructureParser, StructureChecker
and StructureSimplifier as well as ObjectParser, ObjectChecker and ObjectSimplifier.
StructureXs take ObjectXs as arguments, to ensure modularity. For example, you could probably
write an entirely new StructureParser in an afternoon, that you could then use with the already
existing object parser without any problems.
Any IDE features are built on top of this, meaning that any new component here could also easily be
used for development in IDEs.

Figure 2: There can be many parsers and many presenters, but they all use the same MMT checker

As a general rule, the pipeline flow is many to one to many (compare Figure 2). There are multiple
parsers and presenters (like HTML, plaintext, . . .) and you could relatively easily add your own (if
you would like a parser that is more suitable to your particular needs, like, say, one that parses JSON).
However, every instantiation of the pipeline uses the same MMT checker.
The standard classes for each of these is given in the table in Figure 3.

Structure: Object:
Parsing: KeywordBasedParser NotationBasedParser

Checking: MMTStructureChecker RuleBasedChecker
Simplifying: ElaborationBasedSimplifier RuleBasedSimplifier

Figure 3: Standard Names

In the following sections, we will take a closer look at each of the three main phases.

2.2.1 Parsing

Further reading: Delimiters

Parsing in MMT is usually (if you don’t roll your own differently) done with delimiters and keyword.
Everything starts with a keyword and ends with a delimiter. If you’ve written some MMT surface
syntax, you will be already familiar with these delimiters.

3

https://uniformal.github.io/doc/language/declarations.html#notations
https://uniformal.github.io/doc/setup/#2-install-an-ide-jedit-or-intellij-idea-if-you-havent-already
https://uniformal.github.io/apidoc/info/kwarc/mmt/api/parser/KeywordBasedParser.html
https://uniformal.github.io/apidoc/info/kwarc/mmt/api/parser/NotationBasedParser.html
https://uniformal.github.io/apidoc/info/kwarc/mmt/api/checking/MMTStructureChecker.html
https://uniformal.github.io/apidoc/info/kwarc/mmt/api/checking/RuleBasedChecker.html
https://uniformal.github.io/apidoc/info/kwarc/mmt/api/uom/ElaborationBasedSimplifier.html
https://uniformal.github.io/apidoc/info/kwarc/mmt/api/uom/RuleBasedSimplifier.html
https://uniformal.github.io/doc/language/delimiters.html

This structure can also easily be nested.
The most important delimiters (not bothering with document delimiters) are:

• MD (Module Delimiter)

• DD (Declaration Delimiter)

• OD (Object Delimiter)

There are two classes, ParsingStream and ParsingUnit, which encapsulate just about everything
you conceivably would want to parse.

2.2.2 Type Checking

2.2.3 Simplification

4

3 Terms (2019-01-31)

Full session on YouTube: Link.

���

����

�������

������������

������

���

��
�

���		�����
�����

���		������	�����������

���
��		������	��������	�����������

���
�		��������	�����

���		�����������������

���	��

���	��

���������������

�				����

���		��
���
�����

�����		�� ��­�

Figure 4: Overview of MMT Terms

5

https://www.youtube.com/watch?v=vtePl2pGhfc

	Introduction
	Overview (2018-11-28/29)
	Structural Elements and Objects
	Algorithms
	Parsing
	Type Checking
	Simplification

	Terms (2019-01-31)

