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Abstract

Mmt is a framework for representing declarative languages such as logics, type theories, set
theories, etc.. It achieves a high level of generality by systematically avoiding a commitment
to a particular syntax or semantics. Instead, individual language features (e.g., λ-abstraction,
conjunction, etc.) and syntax features (keywords, notations, etc.) are defined as separate,
reusable modules, from which individual languages are assembled. These modules can be
declarative by specifying features as Mmt theories or programmatic by providing individual
rules as plugins.

Despite this high degree of abstraction, it is possible to implement advanced algorithms
generically at the Mmt level. These include knowledge management algorithms (e.g, IDE,
search, change management) as well as logical algorithms (e.g., parsing, type reconstruction,
module system). Thus, we can use Mmt to obtain strong implementations of declarative
languages at extremely low cost.

Moreover, the focus on modularity and language-independence enables system integration,
where Mmt can mediate the exchange of knowledge across different foundational systems and
concrete syntaxes.

1 Motivation

Methods based on formal knowledge pay off almost exclusively at large scales due to the high level
of theoretical understanding and practical investment that they require from both developers and
users. But for the same reason, it is difficult for individual approaches to reach those large scales.
Today’s successful projects such as the Mizar Mathematical Library [TB85] or the formal proof of
the Kepler conjecture [HAB+14] are built on double-digit person years of investment.

Therefore, the last few decades have seen increasing specialization into isolated, mutually in-
compatible systems and incompatible overlapping libraries of formal knowledge. More-
over, during that time the advances in computer and internet technology have dramatically changed
our expectations regarding scalability. Many requirements have become critical that are not an-
ticipated in the designs of formal systems such as collaboration, system interoperability, and mod-
ularity. Three central design choices have proved problematic:

Fixed Foundations Virtually all current systems are based on a fixed foundation, i.e., a fixed
logic in which all formalizations in that system are stated. While the vast majority of classical

∗The latest version of this document is available at http://uniformal.github.io/doc/philosophy/articles/
mmt.pdf.
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mathematics has been formulated in axiomatic set theory, alternative foundations such as higher-
order logic or constructive type theory have become important in computer-supported approaches.
Today almost all systems use foundations that are different from each other and different from
classical set theory, and all attempts to find the “mother of all logical systems” (and convince
others to use it) have failed, e.g., the qed project [Ano94]. This is all the more frustrating because
these incompatibilities are often irrelevant for high-level formalization goals.

Homogeneity Classical mathematics uses the heterogeneous method, going back to the works
by Bourbaki [Bou64], which focuses on defining theories and stating every result in the small-
est possible theory. This allows using theory morphisms to move results between theories in a
truth-preserving way [FGT92]. Consequently, mathematics is usually carried out in highly ab-
stracted settings where the foundational details are hidden. Yet, virtually all formalizations in
current systems are based on the homogeneous method, which uses only conservative extensions
(e.g., definitions, theorems) of the fixed foundation to model mathematical knowledge. Therefore,
formalizations inherently depend on the fixed foundation.

Local Scale Mathematical research and applications are distributed globally, and mathemat-
ical knowledge is highly interlinked by explicit and implicit references. Therefore, a computer-
supported management system should support global interlinking, and management algorithms
have to scale up to large (global) data sets. Yet, virtually all current systems operate under the
implicit assumption that all knowledge is locally available and loaded into main memory. In fact,
because these systems have initially focused on soundness and efficiency at small scales, large scale
knowledge management has proved very difficult to add as an afterthought, often prohibitively so.

However, developers’ resources are stretched thin already by developing (and maintain-
ing) their system at all. Therefore, the gradual migration towards new designs that overcome these
problems is extremely difficult.

The Mmt language and system have been designed from scratch to provide a uniform solution
to the above three problems: Mmt is a globally scalable Module system for Mathematical
Theories that abstracts from and mediates between different foundations and maxi-
mizes the reuse of concepts, tools, and formalizations. Thus, it provides a theoretical and
practical foundation for formal knowledge in the large.

2 The Mmt Language

Mmt is systematically foundation-independent. It separates large scale concerns, which are
addressed generically by Mmt, and small scale concerns, which are addressed by individual foun-
dational languages. Thus, foundation-specific development can focus on the logical core of the
foundation instead of spending resources on ad hoc large scale support. Dually, large scale support
can be developed generically (and often more easily) at the Mmt level.

Mmt integrates successful representational paradigms
• the logics-as-theories representation from proof theoretical frameworks like LF [HHP93],
• categories of theories from model theoretical frameworks like institutions [GB92],
• the structured theories from algebraic specification languages like [SW83],
• reuse along theory morphisms from the “little theories” approach [FGT92],
• the Curry-Howard correspondence from type/proof theory [CF58, How80],
• URIs as logical namespace identifiers from OpenMath [BCC+04],
• standardized XML-based interchange syntax from markup languages like OMDoc [Koh06]
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and makes them available in a single, coherent representational system for the first time. The com-
bination of these features is based on a small set of carefully chosen, orthogonal primitives
in order to obtain a simple and extensible language design.

The central concept of Mmt is that of a theory, which is a named list of declarations. Most
importantly, the declaration of a constant introduces a new name possibly with additional at-
tributes such as type, definiens, or notation. Relative to a theory, objects are formed as syntax
trees with binding.

These three concepts are sufficient to naturally represent virtually all formal languages.
• All languages are represented uniformly as Mmt theories. This includes foundations, logical

frameworks, logics and type theories, signatures and theories, set theories.
• All operators and symbols of a language are represented as Mmt constants. This includes

the sort, constant, function, and predicate symbols of logics, the base type, type operators,
and term constructors of type theories, the concepts, relations, and individuals of ontologies,
as well as – via the Curry-Howard correspondence – the judgments, inference rules, axioms,
and theorems of calculi.
• All composed expressions are represented as objects. This includes formulas, derivations and

proofs, terms, types, kinds, and universes, etc.
All Mmt theories are related via theory morphisms, which are used to uniformly describe

representation theorems between theories. These include translations, functorial representations,
implementations, and models. They are also used as the semantics of import declarations within
theories, which uniformly represent all aspects of building theories modularly. These include
inheritance and instantiation.

LF LF +X

FOL HOL

Monoid Ring

m

m′

add

mult

A key innovation of Mmt is the meta-theory relation be-
tween theories. Let us write M/T to express that we work in
the object language T using the meta-language M . For ex-
ample, most of mathematics is carried out in FOL/ZFC, i.e.,
first-order logic is the meta-language, in which set theory is de-
fined. FOL itself might be defined in a logical framework such
as LF [HHP93], and within ZFC, we can define the language
of natural numbers, which yields LF/FOL/ZFC/Nat.

In Mmt, all of these languages are represented as theories,
each of which may be reused as the meta-theory of another
one. Crucially, the meta-theory indicates both to humans and to machines how a theory is to be
understood. For example, interpretations of ZFC must understand FOL, and the typing relation
of FOL is inherited from LF. The diagram of Mmt theories on the right gives an example. Here
dotted arrows denote the meta-theory relations, solid arrows are language translations, and dashed
arrows are imports. LF +X represents any extension of LF with additional features.

We can see Mmt as the last step in a progression towards more abstract formalisms
as indicated below. In conventional mathematics, domain knowledge is expressed directly in ad
hoc notation. Logic provided a formal syntax and semantics for this notation. Logical frameworks
provided a formal way to define this syntax and semantics. Now Mmt adds a meta-level, at
which we can design logical frameworks. That makes Mmt very robust against future language
developments: We can develop LF + X without any change to the Mmt infrastructure and can
easily migrate all results obtained within LF.
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Mathematics Logic Logical Frameworks Foundation-Independence
Mmt

logical framework logical framework
logic logic logic

domain knowledge domain knowledge domain knowledge domain knowledge

[RK13] provides a comprehensive (albeit by now slightly outdated) introduction to the Mmt
language. A more recent treatment that focuses on the representation of logics in Mmt is given
in [Rab14].

3 The Mmt System

Figure 1: Mmt IDE based on jEdit

Exploiting the small number of primitives in the Mmt language, the Mmt API provides a
simple scalable implementation of Mmt and Mmt-based functionality (written in the functional
and object-oriented language Scala [OSV07]).

Due to the generality of Mmt, one might think that it is not possible to implement deep,
meaningful functionality at the Mmt level. Indeed, implementing any result requires first gener-
alizing it to the Mmt level. However, practical experience has shown that most results
can be generalized to the Mmt level. For each result, this may require a substantial research
effort, which samples existing results for specific foundations and recovers them as special cases
of a general principle. But it is doubly rewarding: Besides yielding a general result, the abstract
level of Mmt provides a more focused view on a concept and often yields clearer intuitions.
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Figure 2: Type Inference in the Mmt Web Server

All Mmt-level functionality is implemented foundation-independently, and foundation-specific
aspects (if any) are left abstract and supplied by plugins. Crucially, experience shows that the
vast majority of the implementation is foundation-independent. For example, the Mmt
API comprises > 30, 000 lines of code, and the LF plugin, which provides in particular typing and
proof rules for LF, comprises < 2000 lines.

Logical results implemented at the Mmt level include notations and parsing, module
system and theory transformations, type reconstruction and simplification, as well as a (so far very
basic) theorem prover. For example, the foundation-independent aspects of type reconstruction
include lookup of identifiers, implicit arguments, solving for meta-variables, constraint delay, and
error reporting. The LF plugin only supplies ∼ 10 rules of a few lines each, which correspond
directly to the statement of the rules on paper – advanced aspects such as modularity and unsolved
meta-variables remain transparent to the plugin developer.

Knowledge management results implemented at the Mmt level include project man-
agement, build system, IDE (build by integrating Mmt with the jEdit text editor), interactive
browsing using HTML+presentation MathML [ABC+03] and JavaScript, change management, as
well as indexing, querying, and search (the latter builds on top of MathWebSearch [KŞ06]). Plugin
interfaces allow the convenient import/export of content in other formats.

Mmt URIs serve as identifiers throughout the implementation and abstract from physical
storage units such as file systems or versioned repositories. Mmt maintains a catalog that maps
URIs to physical locations. Mmt content is loaded into memory only when needed, and the
distribution of content over physical storage and networks remains transparent to Mmt-based
services.

For example, Fig. 1 shows screenshot of a definition of propositional logic with meta-theory
LF in the Mmt IDE. An intentionally introduced error was detected by type reconstruction and
highlighted. Note how the sidebar shows the abstract syntax tree of the theory: The types of the
variables x and y were inferred and are displayed in the syntax tree even though type reconstruction
for the whole object failed. Other features include hyperlinks, context-sensitive auto-completion,
or interactively solving for subexpressions based on the expected type.

Fig. 2 shows a screenshot of a part of the Mmt web server. It shows a fragment of the HOL
Light library as imported into Mmt in [KR14a]. It shows how the web browser infers and displays
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the type of the selected subexpression (in the definition of the universal quantifier, which is written
! in HOL Light). Other interactive features include folding subexpressions, hiding/showing inferred
types, implicit arguments, and redundant brackets, or retrieving the definition of a symbol. It is
also

All this functionality can be made available to individual formal systems at small
cost – all foundation-specific code for the above two examples is contained in the LF plugin.

Many features of the Mmt system are described in individual publications. An overview is
given in [Rab13b]. Source code, binaries, and documentation of the Mmt system are available at
http://uniformal.github.io.

4 Integrating Languages: The LATIN Atlas

PL

ML FOL DFOL
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Figure 3: A Fragment of the LATIN Atlas

The LATIN project [CHK+11, KMR09] (2009-2012) built a library of formalizations of
logics and related languages as well as translations between them. It used LF as the meta-
theory for all languages.

Fig. 3 shows a high-level view of a fragment of the resulting diagram of Mmt theories. The
left side shows some of the logics, the middle zooms into the modular definition of propositional
logic, and the right side zooms in further to show the definition of conjunction as a triple of syntax,
proof theory, and model theory.

The formalized logics include propositional, first-order, sorted first-order, common, higher-
order, modal, description, and linear logics. Type theoretical features, which can be freely com-
bined with logical features, include the λ-cube, product and union types, as well as base types like
booleans or natural number. In many cases alternative formalizations are given (and related to
each other), e.g., Curry- and Church-style typing, or Andrews and Prawitz-style higher-order logic.
The logic morphisms include the relativization translations from modal, description, and sorted
first-order logic to unsorted first-order logic, the negative translation from classical to intuitionistic
logic, and the translation from first to sorted first- and higher-order logic. The model theoretical
semantics is represented as theory morphisms from a logic into a theory representing a foundation.
The foundations include Zermelo-Fraenkel set theory, Church’s higher-order logic, and Mizar’s
formalized set theory [TB85].

All representations systematically exploit modularity and form a single highly intercon-
nected diagram of Mmt theories. Every logical principle, e.g., as conjunction, the universal
quantifier of first-order logic, or the extensionality principle of higher-order logic, is formalized in a
separate module. Thus, logics can be composed modularly from the individual features using
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the Mmt module system. For example, logic of Isabelle [Pau94] can be obtained by combining
the modules for Church-style typing, simple function types, a boolean type, implication, typed
universal quantification, and typed equality, as well as corresponding theories for the proof theory
and corresponding theory morphisms for the model theory.

The full LATIN graph comprises several hundred modules and is available at img/latin-graph.
html1 and spreads about 200 files. Particularly interesting representations are described in detail
in [IR11, HR11, BRS08]. The theoretical background of representing the proof and model theory
of logics in Mmt is discussed in [Rab13a, Rab14].

5 Integrating Libraries:

The Open Archive of Formalizations

LF LF+X

LATIN logic library . . .HOL Light

HOL Light library Bool Arith
. . .

Mizar

Mizar libraryXBoole XReal
. . .

Arith
. . .

Figure 4: Representing Libraries in Mmt

The OAF project [KR14b] (2014-2017) aims at overcoming the isolation and mutual in-
compatibility between the various large libraries of formal knowledge obtained by applying
the homogeneous method to various fixed foundations such as Mizar [TB85], the HOL systems
[Gor88, NPW02, Har96], PVS [ORS92], Coq and Matita [Coq15, ACTZ06], as well as the hetero-
geneous libraries of TPTP [Sut09] and IMPS [FGT93]. The project proceeds in 2 phases, both of
tremendous difficulty.

In the first phase, we make the existing libraries available in a standardized format
by importing them into Mmt. This requires two steps for each library:

1. We represent the logic of the used system in Mmt relative to a logical framework. This
representation doubles as a documentation layer for the logic and often requires a deeper
understanding of the logic and its implementation than published in the literature. In some
cases LF will be sufficient as a logical framework, but in other cases stronger logical frame-
works may have to by designed within Mmt.

2. Much more difficultly, we implement exports from the used system into Mmt. The specifica-
tion of the export is relatively simple except when languages use very unusual idiosyncrasies.
But the difficulty of the implementation is huge and can even be impossible without refac-
toring the system. Therefore, substantial collaboration from within the respective developer
community is indispensable.

1absolute path: http://uniformal.github.io/doc/philosophy/articles/img/latin-graph.html
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At this point, these steps have been mostly completed for Mizar and HOL Light, resulting in the
Mmt diagram of Fig. 4.

In the second phase, we will be able to attack the library integration problem. This problem
cripples state-of-the-art integration attempts between homogeneous systems: Theorems about, for
example, the real numbers defined in one foundation cannot be used to reason about the real
numbers as defined in another foundation. The heterogeneous method could avoid this problem
because all formalizations could be moved easily along morphisms. Therefore, an important goal is
to refactor the existing libraries to be more heterogeneous and to investigate partial or approximate
solutions.

A central method will be to use interface logics and interface theories akin to the use of
interfaces in software engineering. Every problem should be stated in the weakest possible interface
logic and theory, and then individual foundations that realize the interface can be used to obtain
the proof. This is crucial because foundations are usually substantially more expressive than the
interface logic needed to state a problem. For example, axiomatic set theory, higher-order logic,
and constructive type theory are common foundations, but we can give an interface theory for the
real numbers in a much weaker logic, e.g., a fragment of second-order logic. While giving a logic
translation between any two typical foundations can be prohibitively difficult, a weak interface
logic can be easily imported into all of them. This is no coincidence: Whereas foundations are
designed to be simple and logically very expressive (because they should be fixed and implemented
once and for all), interface logics should be as inexpressive as possible even if that makes them
more complex.

The LATIN logic library already developed most of the needed interface logics. This will have
to complemented with a library of interface theories for the typical domains of computer science
and mathematics.

S1 S2

T
c, . . .

v1 v2

v1(c) ≈ v2(c)

Interfaces also provide a way to integrate libraries by using align-
ments [RKS11]. In the diagram on the right, an interface theory T is
realized by two systems S1 and S2, which is witnessed by two theory mor-
phisms vi : T → Si. For a T -symbol c, we say that v1(c) and v2(c) are
aligned via (c, v1, v2). Alignments provide a semantically backed concept
for cross-references between libraries and provide a starting point for li-
brary translations that overcome the library integration problem.
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