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Abstract

This is an overview of systems and frameworks for mathematics and logic along with
high-level descriptions of how they relate to/differ from MwmT. !

See http://uniformal.gituhub.io for an overview of and references to MMT.

The present version of this document is incomplete and will be extended from time to
time.

1 Interchange Formats

These are not tools but languages intended as representation formats for other tools, in particular
for the interchange of data between systems. They usually come with a suite of tools or libraries
for parsing and serializing data. Other than MMT, the languages do not define mathematical
well-formedness and the parsers cannot verify it.

1.1 General Purpose

XML XML [W3C98] is a format that allows representing any kind of structured data. It is
agnostic about the kind of data being represented, and users must define and document an XML
language (= a set of XML tags, often called a schema) for each kind of data. When applied to
logic tools, it is usually used to represent syntax trees (using one XML tag for each non-terminal
symbol) with respect to the context-free grammar underlying the tool.

Most programming languages provide libraries for parsing and serializing XML. Some logic-
specific tools offer exports in custom XML languages for exporting their data, e.g., Mizar.

JSON JSON [Bral4] is similar to XML in motivation and applications. Its syntax is less verbose,
and its handling of data types is more refined. It is widely used in web applications but not
commonly used in logic tools.

MMT MwmrT is designed specifically for representing mathematical and logical data, in particular
formal theories. It offers an XML language as one representation format, but adds modularity,
context-sensitivity, and the representation of semantics.

*The latest version of this document is available at http://uniformal.github.io/doc/philosophy/articles/
mmt-vs-X.pdf.
IThis document is based on a note by Lambert Meertens.
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1.2 Logic-Independent

OpenMath OpenMath [BCC*04] consists of two parts.

Firstly, it is an XML language for representing mathematical formulas, called OpenMath ob-
jects. These objects are similar to S-expressions except that they add binding, key-value attri-
butions, and a fixed set of literals. The leafs of the objects may be references to globally visible
symbols, which are declared in OpenMath content dictionaries.

Secondly, it is a collection of content dictionaries aiming primarily at the fragment of math-
ematics taught at the high-school level. These content dictionaries declare symbols and describe
their meaning and usage.

Content dictionaries remain oriented on single mathematical formulas in a fragment of tradi-
tional mathematics and are not usable for representing the semantics of mathematical theories or
type systems.

MathML MathML [ABCT03] consists of two XML languages. Firstly, content MathML is es-
sentially isomorphic to OpenMath (different XML tags but same meaning). Secondly, presentation
MathML marks up the shape (the presentation) of mathematical formulas. For example, where
content MathML uses a primitive for “exponentiation applied to = and n”, presentation MathML
uses a primitive for “x with a superscript n”.

Given notations for all symbols, it is possible to translate from content to presentation MathML
(although MMT appears to be only tool that implements the general case well); the reverse trans-
formation is Al-complete.

MathML is an official part of HMTL, and many browsers (most notably Firefox) are able to
render presentation MathML formulas at LaTeX-level quality.

OMDoc OMDoc [Koh06] is an XML language aiming at representing all of mathematics.

It subsumes OpenMath /content MathML for representing formulas and presentation MathML
for representing formulas whose content structure is not or only partially known. (OMDoc calls
the latter semi-formal objects.)

It adds primitives for formal theories (theories and morphisms, type declarations, axioms/theorems).
It also adds LaTeX-style narrative features such as text, sectioning, lists, and citations.

MMT MwmT is both a restriction and an improvement of OMDoc. It is restricted to the formal
aspects and excludes the semi-formal and narrative aspects (although this is ongoing work). The
XML language that MMT uses is essentially a fragment of OMDoc.

Contrary to OpenMath, MathML, and OMDoc, MMT allows representing the semantics of
mathematical objects and theories. For example, MMT defines and can check whether a used
symbol is declared and imported into the current scope. More difficultly, if the respective type
systems and logics are represented as MMT theories themselves, MMT defines and can check
whether objects are well-formed or true.

OpenMath, MathML, and OMDoc focus on the creation of a language standard and relegate
the development of tools to expected users of the standard. MMT additionally provides a reference
implementation with a well-integrated suite of services. For example, MMT theories can provide
notations for symbols, and MMT can use these notations to parse text representations and to
render content as HTML/presentation MathML.



1.3 Logic-Specific

TPTP TPTP [Sut09] consists of three parts.

Firstly, it is a text-based Prolog-parsable interchange syntax for a family of related logics. The
TPTP syntax is context-free and expressive enough to represent formal theories of a large variety
of logics. But the fragment of the TPTP syntax that corresponds to the well-formed formulas has
been officially specified only for some individual logics. Originally this was only untyped first-order
logic; later it was extended to typed first-order logic, higher-order logic, and their variants with
arithmetic and shallow polymorphism.

Secondly, it is a library of test problems (i.e., theories in which some statements are marked
as axioms and others as conjectures) for automated theorem provers. As such, it has become
a standardization layer that makes logic tools interoperable. However, this interoperability is
mostly restricted to first-order logic tools; for more complex type systems and logics, the ad hoc
specification of the well-formed fragments has proved very challenging.

Thirdly, it is a suite of tools for syntax-checking, presenting, and transforming TPTP problems
into other languages (mostly into the input syntaxes of various theorem provers).

OpenTheory OpenTheory [Hur09] was specifically developed for the HOL family of systems.
It aims at exporting libraries in order to reimport them in other provers. Consequently, it pro-
vides support for abstracting from definitions (which may be incompatible between libraries) and
preserving high-level proof steps (which are more robust to import).

MMT While TPTP and OpenTheory fix a small set of logics, whose semantics is assumed to be
given externally, MMT is logic-independent and allows (in fact: requires) representing the syntax
and semantics of the logic itself.

All TPTP logics have been defined inside MMT/LF and an exporter from TPTP to MMmT/LF
is available. In fact, this constitutes the official (and executable) definition of well-formed TPTP
theories. All variants of HOL have been or can easily be represented in MMT/LF.

MMT does not focus on theorem proving and exchange between specific theorem provers. There-
fore, TPTP and OpenTheory provide better tool support for their specific application and their
specific family of logics.



2 Semantic Web

2.1 Ontology Languages
2.2 Reasoning Tools

3 Mathematical Knowledge Management

3.1 Authoring and Project Management
3.2 Browsing and Navigation

3.3 Search and Querying

3.4 Libraries

4 Logical Frameworks

Logical frameworks are formalisms in which the syntax and semantics of logics (and similar lan-
guages) can be defined. [Rabl14] gives an overview. Two groups of frameworks can be distinguished.

A declarative framework F' is itself a logic and allows representing other logics L as theories of
F. Results about F' such as normalization or type-checking induce according results for each L.
Typically but not necessarily, declarative frameworks focus on proof theoretical and constructive
aspects, thus excluding many traditionally accepted proofs and proof techniques. [Pfe01] gives an
overview.

An abstract logical framework defines logics using abstract sets of sentences and models or (less
often) proofs. Abstract frameworks are often formulated in terms of category theory. They do not
focus on concrete syntax of logics and are not limited to finite or computable logic definitions.

4.1 Declarative and Proof-Theoretical

LF LF [HHP93] is a logical framework based on the dependently-typed A-calculus. It uses
the judgments-as-types methodology. In particular, logic definitions usually use a declaration
proof : form — type such that proof F' is the type of proofs of F.

Twelf [PS99] is the most mature concrete implementation of LE. It includes a theorem prover
for meta-theorems, i.e., theorems about the defined logics.

A wide variety of logics have been defined in Twelf, e.g., in the LATIN library [CHK*11]. It
includes an exporter to MMT’s XML language.

Dedukti Dedukti [BCH12| implements LF modulo rewriting. By supplying rewrite rules (whose
confluence Dedukti assumes) in addition to an LF theory, users can give more elegant logic encod-
ings.

A number of logic libraries have been exported to Dedukti, which is envisioned as a universal
proof checker. An export from Dedukti to MMT is planned.



Isabelle Isabelle [Pau94] is a logical framework based on intuitionistic higher-order logic. Seen
as a pure type system [ABIT96] with propositions-as-types, its underlying Pure logic is very similar
to LF. The key declaration in a logic definition is usually of the form true : form — prop.

Isabelle includes an LCF-style interactive theorem prover and a tactic language for proving
object theorems, i.e., theorems within the defined logic. Despite being logic-independent, most of
the proof support in Isabelle is optimized for individual logics defined in Isabelle, most importantly
Isabelle/HOL, with which Isabelle is often mistakenly identified. Other logic definitions with sizable
libraries are Isabelle/ZF and Isabelle/FOL.

MMT MMT abstracts from and subsumes declarative logical frameworks. Thus, the logical
framework can be chosen and evolved flexibly. Moreover, almost all of the tool support in MMT is
defined independent of the logical framework. MMT currently lacks sophisticated theorem provers
as in Twelf or Isabelle.

A declarative framework F is represented in MMT as a theory F'. Then logics L defined in F
are represented as theories L with meta-theory F', and L-theories 1" are represented as theories T’
with meta-theory L.

The semantics of an MMT theory is defined by its meta-theory. Thus, if the semantics of F’
is defined, it induces the semantics of L and T'. For theories without meta-theory such as F', the
semantics can be defined by a set of inference rules implemented in a plugin.

MwMT includes a set of plugins that define the inference rules for several frameworks related to
LF, including in particular LF itself, LF with rewriting, and LF with shallow polymorphism. The
semantics of other frameworks can be defined accordingly.

4.2 Abstract and Model-Theoretical

Institutions Institutions [GB92] is the most developed abstract logical framework. Logics are
defined as a tuple of a category of theories, two functors mapping theories to sentences and model
classes respectively, and a satisfaction relation between sentences and models. Most logics can
be formulated as institutions, and many meta-theorems can be generalized to the institution-
independent level [Dia08].

Institutions live inside category theory and provide no tool support in themselves. From a
practical perspective, their primary strength is that they introduce intuitions and methodologies
that, if followed, yield elegant implementations.

Hets Hets [MMLO7] is an implementation of institutions. It defines the data type of institutions
as a class in a programming language. On top of that, it adds support for parsers and checkers,
logic translations (institution comorphisms), modular specifications, and the shipping of proof
obligations to external provers.

It comes with a number of built-in individual institutions and translations, centered around
the CASL family of logics [CoF04]. Contrary to declarative frameworks, adding a new institution
requires modifying the Hets source code.

MMT [Rabl4, Rabl3] can be viewed as a synthesis of the declarative and the institutions ap-
proach, combining the advantages of each in one unified framework. The basic idea is to use
declarative logical frameworks as the environment in which logics, theories, formulas, proofs, and



models are defined concretely (and for which tool support is available) and institutions as the pla-
tonic background in which these objects exist (and in which meta-logical results are established).

In particular, [Rab13] shows how logic definitions in LF induce institutions. This was used
in [CHK™12] to write logic definitions in Twelf, export them to MMT, and then import the logic
definitions into Hets.

MMT does not provide any explicit support for institutions, but the available primitives are
designed to represent those institutions induced by declarative frameworks. This yields a major
simplification in the sense of representational uniformity: Theories at all levels — logical frameworks,
logics, and abstract and concrete mathematical theories, and mathematical foundations — are
represented uniformly as MMT theories.

Consider a theory T of a logic L defined in a declarative framework F'. Then formulas, proofs,
and other expressions over T' are represented as MMT objects over T. Consider, moreover, a
foundation of mathematics (e.g., any of the languages from Sect. 5) defined as an MMT theory:
this could be for example a theory ZFC with meta-theory LF as in [IR10]. Then models of T" are
represented as MMT theory morphisms T — ZFC.

5 Selected Individual Proof Assistants

While interchange formats and logical frameworks do not focus on a particular logic, the deepest
tool support (in particular for type-checking and automated and interactive theorem proving) has
been built for specific logics. These usually come with an idiosyncratic text input language, a
tactic language, a module system, a dedicated (usually monolithic) tool for parsing, type-checking,
and proving, and a library of formalized theories.

Interoperability between these tools is usually non-existent or highly brittle. Usually, each pair
of tools differs in non-trivial ways in all of the following respects: the syntax (i.e., well-formedness)
and semantics (i.e., provability) of the logic underlying the tool, the concrete input syntax used
for it, the tactic language, the module system, and the definitions used in the library.

The following list is not complete and tries to focus on languages that provide the expressivity
and proof support to be practical for the verification of mathematics or software.

Each of these languages L can be represented in MMT, either directly, i.e., without a meta-
theory, or with a logical framework as its meta-theory. In either case, the respective library can
be represented as an MMT library with meta-theory L.

There is relatively little survey literature that compares these systems across the board. [Wie06]
and the related work in [RK13] survey individual aspects.

5.1 Higher-Order Logic
HOL HOL [Gor88]

HOL Light HOL Light [Har96]

Isabelle/HOL Isabelle/HOL [NPWO02]

5.2 Set Theory
Mizar Mizar [TB85]



Isabelle/ZF Isabelle/ZF [PC93]

5.3 Dependent Type Theory
Agda Agda [Nor05]

Coq Coq [Coql5]
Matita Matita [ACTZ06]

Nuprl Nuprl [CAB*86]

5.4 Other Foundations
ACL2 ACL2 [KMMOO]

PVS PVS [ORS92]

Specware Specware [SJ95]
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