MMT: A Foundation-Independent Approach to
Declarative Languages

Florian Rabe

Jacobs University Bremen

March 30 2015

Motivation

My Background

» Areas

» theoretical foundations
logic, type theory, foundations of mathematics
» formal knowledge representation
specification, formalized mathematics, ontologies
» scalable applications
module systems, libraries, system integration
» Vision
» Develop a universal framework
for the formal representation of knowledge and its semantics,
» apply it to the safe and scalable integration of
math, logic, and computer science.

» Methods
> survey and abstract understand fundamental concepts
» relate and transfer unify different research areas
» long-term investment identify stable ideas, do them right
» modularity and reuse maximize sharing across languages, tools

Motivation

Foundations

» Foundation = the most primitive formalism on which
everything else is built
set theories, type theories, logics, category theory, ...

» We can fix the foundation once and for all — but which one?
> In math: usually implicit and arbitrary foundation

» can be seen as avoiding subtle questions

» but also as a strength: it's more general
> In CS: each system fixes its own foundational language

e.g., a variant of type theory or HOL

Motivation

Fixed Foundations

» Fixing foundation the first step of most implementations
often foundation and implementation have the same name

» No two implementations for the exact same foundation
even reimplementations diverge quickly
> Negative effects
» isolated, mutually incompatible systems
no sharing of results, e.g., between proof assistants
> no large scale libraries
each system’s library starts from scratch
» no library archival
libraries die with the system
» comparison of systems difficult
no common problem set
> slow evolution
evaluating a new idea can take years

MMT

Overview

» Foundation-independent framework
» avoid fixing foundation wherever possible

> design and implement generically
» permit instantiation with different foundations
» MMT language
» prototypical formal declarative language
» admits concise representations of most languages
» continued development since 2006 (with Michael Kohlhase)
» > 100 pages of publication
» MMT system
» API and services
» continued development since 2007 (with > 10 students)
» > 30,000 lines of Scala code
» ~ 10 papers on individual aspects

MMT
The Meta-Meta-Logical Approach

» Foundation-independence = last step in a progression of
abstractions

» MMT governs the meta-meta-level
> In retrospect, | define MMT as Meta-Meta-Tool

Mathematics | Logic Meta-logic Foundation-
Independence
| MMT
] logical framework
] logic
domain knowledge

MMT
Foundation-Independence

» MMT arises by iterating the following steps
1. Choose a typical problem
2. Survey and analyze the existing solutions
3. Differentiate between foundation-specific and
foundation-independent concepts,/problems/solutions
4. Integrate the foundation-independent aspects into MMT
5. Define interfaces to supply the foundation-specific aspects

» Separation of concerns between

» foundation developers focus on logical core
» service developers e.g., search
» application developers e.g., IDE

yields rapid prototyping for logic systems

MMT

Foundation-Independence

» MMT arises by iterating the following steps
1. Choose a typical problem
2. Survey and analyze the existing solutions
3. Differentiate between foundation-specific and
foundation-independent concepts,/problems/solutions
4. Integrate the foundation-independent aspects into MMT
5. Define interfaces to supply the foundation-specific aspects

» Separation of concerns between

» foundation developers focus on logical core
» service developers e.g., search
» application developers e.g., IDE

yields rapid prototyping for logic systems

» But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

MMT

Basic Concepts
Design principle
» few orthogonal concepts
» uniform representations of diverse languages

sweet spot in the expressivity-simplicity trade off
Concepts

» theory = named set of declarations
» foundations, logics, type theories, classes, specifications, ...
» constant = named atomic declaration

» function symbols, theorems, rules, ...
» may have type, definition, notation

» term = unnamed complex entity, formed from constants
> expressions, types, formulas, proofs, ...

> typing F71 s : t between terms relative to a theory

> well-formedness, truth, consequence ...

Small Scale Example (1)

Logical frameworks in MMT

MMT

theory LF {
type
Pi # M V1 2
arrow #1 — 2
lambda # A V1 2
apply # 12

}

name[: type][#notation]

Logics in MMT /LF

theory Logic: LF {
prop : type

ded : prop — type #F 1

}
theory FOL: LF {

include Logic
term : type

judgments-as-types

higher-order abstract syntax

forall : (term — prop) — prop # V V1 . 2

MMT
Small Scale Example (2)

FOL from previous slide:

theory FOL: LF {

include Logic

term © type

forall . (term — prop) — prop # V V1
}

Algebraic theories in MMT /LF/FOL:

theory Magma : FOL {
comp : term — term — term # 1 o 2
}

theory SemiGroup : FOL {include Magma, ...}
theory CommutativeGroup : FOL {include SemiGroup,
theory Ring : FOL {

additive: CommutativeGroup

multiplicative: Semigroup

MMT
Theories and Theory Morphisms

> Theories
» uniform representation of
» foundations e.g., logical frameworks, set theories, ...
> logics, type theories
» domain theories e.g., algebra, arithmetic, ...

> little theories: state every result in smallest possible theory

maximizes reuse

» Theory morphisms
» uniform representation of

> extension e.g., Monoid — Group
> inheritance e.g., superclass — subclass
> semantics e.g., FOL — ZFC
> models e.g., Nat: Monoid — ZFC
> implementation e.g., specification — programming language
> translation e.g., typed to untyped FOL
» functors e.g., output — input interface

» homomorphic translation of expressions
» preserve typing (and thus truth)

T'ne LATIN Atlas
Large Scale Example: The LATIN Atlas

v

DFG project 2009-2012 (with DFKI Bremen and Jacobs Univ.)

Highly modular network of little logic formalizations
» separate theory for each
> connective/quantifier
> type operator
» controversial axioms e.g., excluded middle, choice, ...
> base type

v

» reference catalog of standardized logics
» documentation platform

Written in MMT/LF
> 4 years, with ~ 10 students, ~ 1000 modules

v

I'ne LATIN Atlas

Logic Diagrams in LATIN
An example fragment of the LATIN logic diagram

» nodes: MMT/LF theories
» edges: MMT/LF theory morphisms

ML

N ¢ “PL_~ e AP
owL
Isabelle/HOL — ZFC —> Mizar

DL

» each node is root for library of that logic

» each edge yields library translation functor
library integration very difficult though

I'ne LATIN Atlas

Current State

> Little theories including

| 4

propositional, common, modal, description, linear logic,
unsorted/sorted /dependently-sorted first-order logic, CASL,
higher-order logic

» A-calculi (A-cube), product types, union types, ...
» ZFC set theory, Mizar's set theory, Isabelle/HOL
> category theory

» Little morphisms including

>

vV vy vy

relativization of quantifiers from sorted first-order, modal, and
description logics to unsorted first-order logic

negative translation from classical to intuitionistic logic
translation from type theory to set theory

translations between ZFC, Mizar, Isabelle/HOL
Curry-Howard correspondence between logic, type theory, and
category theory

Foundation-Independence

Logical Results Obtained at the MMT Level

» Module system
modularity transparent to foundation developer

v

Concrete/abstract syntax
notation-based parsing/presentation

v

Interpreted symbols, literals

external model /implementation reflected into MMT
» Type reconstruction
foundation plugin supplies only core rules

» Simplification

rule-based, integrated with type reconstruction
» Theorem proving? very recent, ongoing
» Code generation? most likely

Foundation-Independence
Abstract Syntax

Key ideas
» no predefined constants
> very general term constructor

» ¢(I; E) binds variables and takes arguments
» non-binding operators: I empty e.g., apply(-; f,a) for LF's fa
» typical binders: I and E have length 1
e.g., lambda(x:A; t) for LF's Ax: A.t

contexts r == (x[: E][= E))*
terms E ==

constants c

variables X

complex terms | c(l; E®)

MMT implements foundation-independent data structures for
theories and terms

Foundation-Independence

Concrete Syntax

» Notations of ¢ introduce connect concrete syntax for c(I; E)

e.g., for LF

production MMT declaration | abstract syntax
E:=
type type # type
Mx: Ei.E, | Pi #MN V1. 2| Pi(x:E; E)
Ei— E arrow #1— 2 arrow(-; Eq, Ep)
Ax : E;.E; | lambda # A V1. 2 | lambda(x: Eq; E)
Ei E apply # 12 apply(-; E1, E2)

MMT implements foundation-independent parser and printers

Foundation-Independence

Inference System
For any theory %:

Fs I [is a valid context
MNst: A t has type A
s E=E' | E and E’ are equal
Ny 2 A A is inhabitable
MMT define some foundation-independent rules

» congruence rules for equality

> contexts
Fs T [Tk -t Al [TEst: A
Fs - Fs T, C[Z A][: t]
> rules for atomic terms, e.g.
x:AinT x=tinl
Ny x: A Ny x=1t

Foundation-specific rules for complex terms are
» declared in theories
» implemented by plugins

Foundation-Independence

Inference System: Implementation

MMT implements foundation-independent parts of type checker
» foundation-independent rules
> |ookup in theories, context
» simplification, definition expansion
> error reporting
Foundation-specific rules supplied by plugins

» ~ 8 abstract rules, e.g.,

infer type

check term at given type

» check equality of two given terms
» simplify a term

vy

> each rule can recurse into other judgements
» plugins provide concrete instances

» Example LF: ~ 10 rules for LF, ~ 10 lines of code each

Foundation-Independence

Inference System: Type Reconstruction

Type Reconstruction
» Judgment with unknown meta-variables

» implicit arguments, type parameters
» omitted types of bound variables

» Goal: prove judgment and solve meta-variables

» Much harder than type checking requires delaying constraints

MMT implements foundation-independent type reconstruction
> transparent to foundations

» (almost) no extra cost for foundation developer
one additional rule for LF

Applications and Services

Application-Independence

» Practical logic-related systems often application-specific
» fixed functionality for fixed foundation

often: read-eval-print design

» many applications shallow, decay quickly

» MMT approach: application-independence

1.

focus on APl for MMT language
data structures and high-level interfaces

. encapsulate advanced functionality in reusable services

e.g., theorem proving, search, ...
allow plugin interfaces for customization
foundation-specific rules, parsers, change listeners, ...

. build lightweight applications on top IDE, library manager, ...

Applications and Services

Knowledge Management Results at the MMT Levels

» Change management recheck only if affected
» Project management indexing, building
» Extensible export infrastructure

Scala, SVG graphs, LaTeX, HTML, ...

Search, querying substitution-tree and relational index

v

» Browser interactive web browser

v

Editing IDE-like graphical interface

IDE

Applications and Services

> Inspired by programming language IDEs

» Components
» jEdit text editor (in Java): graphical interface

| 4

MMT API (in Scala)

» jEdit plugin to tie them together

only ~ 1000 lines of glue code

> Features
» outline view
> error list
» display of inferred information
> type inference of subterms
» hyperlinks: jump to definition
» search interface
» context-sensitive auto-completion: show identifiers that

Applications and Services

IDE: Example View

jEdit - C:\other\oaff\test\source\examples\pL.mmt !E
File Edit Search Markers Folding View Utilities Magos‘glug'\ns Help

A lemt LI < plmmt x|

% s -
- szli‘t ce http://cds.omdoc. org/exampless -
o F y PL : http: Hcdg.Dmdoc.orgfurtheor‘les?LF =
é E;ﬂ!e:fc:/ntherlnaﬁftestjsm i prop ¢ type H
Tt . ded prop + tupe
.’jai s and o prop prop + prop
an .
o-impl « impl : prop * prop » prop
E“t‘;’pe . EBQOUiY : prop ¢ prop + prop B
Edefinition a = [X,’_A]} (x = ‘_«I) M dEd i
=-lambda e
Hx g i
prop | 4] | »
By
~-prop
Erand ol ‘
=rimpl =
o o e s DL 26gUN?
~argument must have dnmam type
ﬁ http://cds.omdoc.org/examples?PL; x:prop, y:prop |- ded : prop
~hitp-//cds.omdoc.org/examples?PLs x-pro, y-prop |- proptype = prop 4|
i _’I Ll d Consu\elErmr List MMT
8,30

(mmt,sidekick, UTF-8)S m r o WVEERELMD 4 error(s)19:50

Applications and Services

An Interactive Library Browser

» MMT content presented as HTML5+MathML pages
Dynamic page updates via Ajax
MMT used through HTTP interface with JavaScript wrapper
Features
> interactive display e.g., inferred types, redundant brackets
» smart navigation via MMT ontology
can be synchronized with jEdit
» dynamic computation of content

e.g., definition lookup, type inference
» graph view: theory diagram as SVG

v

v

v

Applications and Services

Browser: Example View

The MMT Web Server

Graph View Search Administration Help

Style: html5 code.google.com / p / hollight / source / browse / trunk ? bool
=+ hollight 2| bool
arith.omdoc

El' show/hide type show/hide onedim-notation ~ show/hide tags show/hide metadata

+ real.omdoc W x:_. a(precedence 0)

realax.omdoc

E

[+ bool.omdoc J

[+ cale_int.omdoc (T_DEF show/hide type show/hide tags show/hide metadata]
- cal .omd

¢ cale_num.omdoc [TRUTH show/hide type show/hide definition show/hide tags show/hide metadata J

[+ calc_rat.omdoc

[+ cart.omdoc @\ show/hide type show/hide onedim-notation show/hide tags show/hide metadata]

[#} class.omdoc - - -

4 define.omdoc LA ND_DEF show/hide type show/hide tags show/hide metadata]

[+ ind_defs.omdoc = show/hide type _ show/hide onedim-notation _ showr/hide tags _show/hide metadata)

[+ ind_types.omdo¢ e s .

& int omdoc ﬂMPiDEF show/hide type show/hide tags show/hide metadata J

[+ iterate.omdoc ! show/hide type show/hide onedim-notation show/hide tags show/hide metadata

& lists.omdoc type {A:holtype }(A = bool) = bool

[+ nums.omdoc

[+ pair.omdoc onedim-notation

4

[

E

£

- realarith.omdoc [l‘

ORALL_DEF show/hide type show/hide tags show/hide metadata }

etsomdoc type {A:holtype} F (1 A) = AP:A = bool.P= Ax:A.T

Applications and Services

Browser Features: 2-dimensional Notations

AL, POW DIV showhide type | show/hide definition

xft

type F Vx:real. Vy:real. Vi:num (%)” ==

-.‘..Fi

Applications and Services

Browser Features: Proof Trees

The MMT Web Server
Graph View Administration Help
Style: html5 cds.omdoc.org / courses / 2013 / ACS1 / exercise_10.mmt 2 Problem3
5 acs1_2013 2] theory Problem3 meta LI
1=} exercise_10.omdoc g
= include : http://cds.omdoc.org/examples?FOLEQNatDed
& Problem2 p L <
£ Problemd circ : term — term — term
example
” e term
latin
Imfdb R Dok Yaxeexx
(+ mathscheme
- manl c t b Va¥ywey= youx
- openmath
} test L © b Vaeox=x
- tptp
- urtheories
o ;
& reconstructed types ’
implicit arguments »
FVYresx=x
redundant brackets & * show
Enter an object over theory: [httpJ/icds omdoc. org/courses/201 :
- infer type hide
[x)sse simplify
ml L fold

" analyze [simplify

[xxee

[*iterm) term

Applications and Services

Browser Features: Type Inferece

ORALL DEF showthide type show/hide tags
type {A:holtype} F (1A)= 2 P:A=>bool .P= kAT

¢ R reconstructed types
implicit arguments
@X[STS_DEF show

show/hide metadata W

1

[

? (A = bool) = bool

[TR

redundant brackets
\.’ show/hide type |
} infer type I

[OR_DEF show/hide N
= simplify

show/hide type fold
type bool

Applications and Services

Browser Features: Parsing

Enter an object over theory: Im\f\ighb’sDurcefbrowseftrunk'?arith 2 analyze v simplify

E

) BB = result: [x] Yy.3dz.y :\j_L_l__w_!_ e o<
Y-y ﬁ inferred type: { v:num bool

4

Applications and Services

Example Service: Search

[Enter Java regular expressions to filter based on the URI of a declaration
Namespace |

Theory |

Name |

[Enter an expression over theory |http:ﬁcode.google_comfp!hDI—\ightfsourcefbrowseftrunl
$x,y,p: x MOD p =y MOD p
Use $x.y,z:query to enter unification variables.

type of MOD_EQ

B ¥menum. Ya:num, YVp:inum . Yg:num.m = n+ ¢+ p— mMODp = n MOD p
type of MOD_MULT_ADD
F Vmcnum. Ve:num, Vpinum . (m=a+ p) MOD g = pMOD &

Applications and Services

IATEXIntegration

v

MMT declarations spliced into IATEX documents
shared MMT-IATEX knowledge space
IATEX macros for MMT-HTTP interface
Semantic processing of formulas
> parsing
> type checking
» semantic enrichment: cross-references, tooltips

v

v

v

Design not IATEX-specific
e.g., integration with word processors possible

IATEXIntegration: Example
Inferred arguments are inserted during compilation:
> upper part: IATEX source for the item on associativity
> lower part: pdf after compiling with ETEX-MMT
> type argument M of equality symbol is inferred and added by
MMT

\begin{mmtscope}

For all \mmtvar{x}{in M},\mmtvar{y}{in M},\mmtvar{z}{in M}
it holds that !(x * y) * z = x * (y * z)!

\end{mmtscope}

A monoid is a tuple (M, c,e) where

— M is a sort, called the universe.
— o is a binary function on M.
— e is a distinguished element of M, the unit.

such that the following axioms hold:

— For all z,y,z it holds that (xoy)oz=jxo(yoz)
— For all & it holds that xce=jy;x and eoxr=).

OAF: An Open Archive ot Formalizations
Current Work: Library Integration

» Open Archive of Formalizations open PhD position!
Michael Kohlhase and myself, 2014-2017
» Goal: archival, comparison, integration of formal libraries
Mizar, HOL systems, IMPS, Coq/Matita, PVS, ...
» Big, overlapping libraries — that are mutually incompatible

MMT

/N

LF LF+X

LATIN logic library

HOL Light library
Mizar library

OAF: An Open Archive ot Formalizations

Goal: Universal Library Infrastructure

» MMT as representation language
> Repository backend: MathHub
» based on GitLab — open-source analog of GitHub server
» GitLab instance hosted at Jacobs University
> free registration of accounts, creation of repositories
» Generic library management
> browser
> inter-library navigation
> search
» change management

OAF: An Open Archive ot Formalizations

Goal: Exports from Proof Assistants

» Export major libraries into MMT
» Representative initial targets
» Mizar: set theoretical initial export done (with Josef Urban)
» HOL Light: higher-order logic
initial export done (with Cezary Kaliszyk)
Coq or Matita: type theoretical
IMPS: little theories method
» PVS: rich foundational language

v

v

» Major technical difficulty

> exports must be written as part of proof assistant
» not all information available

OAF: An Open Archive ot Formalizations

Goal: Towards Library Integration

» Refactor exports to introduce modularity
» 2 options
» systematically during export
e.g., one theory for every HOL type definition
> heuristic or interactive MMT-based refactoring
» Collect correspondences between concepts in different libraries
heuristically or interactively
» Relate isomorphic theories across languages
» Use partial morphisms to translate libraries

Conclusion

» MMT: general framework for declarative languages

» Foundation-independent representation language
» Application-independent implementation

v

Easy to instantiate with specific foundations
rapid prototyping logic systems

v

Multiple deep foundation-independent results

> logical: parsing, type reconstruction, module system, ...
» knowledge management: search, browser, IDE, ...

v

MMT quite mature now, ready for larger applications
about to break even

v

Interesting for
» new, changing foundations
» generic applications/services
» system integration/combination

Further Resources

Web sites
» MMT: https://svn.kwarc.info/repos/MMT/doc/html/index.html
> OAF web server (experimental): http://mathhub.info:8080/

Selected publications all available from https://kwarc.info/people/frabe

>

the primary paper on the MMT language (1&C 2013, with M. Kohlhase):
A Scalable Module System

a more recent paper on the MMT approach to logic (JLC 2014):
How to Identify, Translate, and Combine Logics?

Foundations in LATIN: (MSCS 2011, with M. lancu)
Formalizing Foundations of Mathematics

Modular logics in LATIN (TCS 2011, with F. Horozal):

Representing Model Theory in a Type-Theoretical Logical Framework
Mizar in OAF (JAR 2013, with M. lancu, M. Kohlhase, J. Urban):

The Mizar Mathematical Library in OMDoc: Translation and Applications

HOL Light in OAF: (CICM 2014, with C. Kaliszyk)
Towards Knowledge Management for HOL Light

https://svn.kwarc.info/repos/MMT/doc/html/index.html
http://mathhub.info:8080/
https://kwarc.info/people/frabe

	Motivation
	My Background
	Foundations
	Fixed Foundations

	MMT
	Overview
	The Meta-Meta-Logical Approach
	Foundation-Independence
	Foundation-Independence
	Basic Concepts
	Small Scale Example (1)
	Small Scale Example (2)
	Theories and Theory Morphisms

	The LATIN Atlas
	Large Scale Example: The LATIN Atlas
	Logic Diagrams in LATIN
	Current State

	Foundation-Independence
	Logical Results Obtained at the MMT Level
	Abstract Syntax
	Concrete Syntax
	Inference System
	Inference System: Implementation
	Inference System: Type Reconstruction

	Applications and Services
	Application-Independence
	Knowledge Management Results at the MMT Levels
	IDE
	IDE: Example View
	An Interactive Library Browser
	Browser: Example View
	Browser Features: 2-dimensional Notations
	Browser Features: Proof Trees
	Browser Features: Type Inferece
	Browser Features: Parsing
	Example Service: Search
	LaTeXIntegration
	LaTeXIntegration: Example

	OAF: An Open Archive of Formalizations
	Current Work: Library Integration
	Goal: Universal Library Infrastructure
	Goal: Exports from Proof Assistants
	Goal: Towards Library Integration
	Conclusion
	Further Resources

