
1

MMT: A Foundation-Independent Approach to
Declarative Languages

Florian Rabe

Jacobs University Bremen

March 30 2015

Motivation 2

My Background

I Areas
I theoretical foundations

logic, type theory, foundations of mathematics
I formal knowledge representation

specification, formalized mathematics, ontologies
I scalable applications

module systems, libraries, system integration

I Vision
I Develop a universal framework

for the formal representation of knowledge and its semantics,
I apply it to the safe and scalable integration of

math, logic, and computer science.

I Methods
I survey and abstract understand fundamental concepts
I relate and transfer unify different research areas
I long-term investment identify stable ideas, do them right
I modularity and reuse maximize sharing across languages, tools

Motivation 3

Foundations

I Foundation = the most primitive formalism on which
everything else is built

set theories, type theories, logics, category theory, . . .

I We can fix the foundation once and for all — but which one?

I In math: usually implicit and arbitrary foundation
I can be seen as avoiding subtle questions
I but also as a strength: it’s more general

I In CS: each system fixes its own foundational language
e.g., a variant of type theory or HOL

Motivation 4

Fixed Foundations

I Fixing foundation the first step of most implementations
often foundation and implementation have the same name

I No two implementations for the exact same foundation
even reimplementations diverge quickly

I Negative effects
I isolated, mutually incompatible systems

no sharing of results, e.g., between proof assistants
I no large scale libraries

each system’s library starts from scratch
I no library archival

libraries die with the system
I comparison of systems difficult

no common problem set
I slow evolution

evaluating a new idea can take years

MMT 5

Overview

I Foundation-independent framework
I avoid fixing foundation wherever possible
I design and implement generically
I permit instantiation with different foundations

I MMT language
I prototypical formal declarative language
I admits concise representations of most languages
I continued development since 2006 (with Michael Kohlhase)
I > 100 pages of publication

I MMT system
I API and services
I continued development since 2007 (with > 10 students)
I > 30, 000 lines of Scala code
I ∼ 10 papers on individual aspects

MMT 6

The Meta-Meta-Logical Approach

I Foundation-independence = last step in a progression of
abstractions

I MMT governs the meta-meta-level

I In retrospect, I define MMT as Meta-Meta-Tool

Mathematics Logic Meta-logic Foundation-
Independence

MMT
logical framework

logic

domain knowledge

MMT 7

Foundation-Independence

I MMT arises by iterating the following steps

1. Choose a typical problem
2. Survey and analyze the existing solutions
3. Differentiate between foundation-specific and

foundation-independent concepts/problems/solutions
4. Integrate the foundation-independent aspects into MMT
5. Define interfaces to supply the foundation-specific aspects

I Separation of concerns between
I foundation developers focus on logical core
I service developers e.g., search
I application developers e.g., IDE

yields rapid prototyping for logic systems

I But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

MMT 7

Foundation-Independence

I MMT arises by iterating the following steps

1. Choose a typical problem
2. Survey and analyze the existing solutions
3. Differentiate between foundation-specific and

foundation-independent concepts/problems/solutions
4. Integrate the foundation-independent aspects into MMT
5. Define interfaces to supply the foundation-specific aspects

I Separation of concerns between
I foundation developers focus on logical core
I service developers e.g., search
I application developers e.g., IDE

yields rapid prototyping for logic systems

I But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

MMT 8

Basic Concepts

Design principle

I few orthogonal concepts

I uniform representations of diverse languages

sweet spot in the expressivity-simplicity trade off
Concepts

I theory = named set of declarations

I foundations, logics, type theories, classes, specifications, . . .

I constant = named atomic declaration

I function symbols, theorems, rules, . . .
I may have type, definition, notation

I term = unnamed complex entity, formed from constants

I expressions, types, formulas, proofs, . . .

I typing `T s : t between terms relative to a theory

I well-formedness, truth, consequence . . .

MMT 9

Small Scale Example (1)
Logical frameworks in MMT

theory LF {
t y p e
Pi # Π V1 . 2 name[: type][#notation]
arrow # 1 → 2
lambda # λ V1 . 2
a p p l y # 1 2

}

Logics in MMT/LF

theory L o g i c : LF {
prop : t y p e
ded : prop → t y p e # ` 1 judgments-as-types

}
theory FOL : LF {

i n c l ude L o g i c
term : t y p e higher-order abstract syntax
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

MMT 10

Small Scale Example (2)

FOL from previous slide:

theory FOL : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

Algebraic theories in MMT/LF/FOL:

theory Magma : FOL {
comp : term → term → term # 1 ◦ 2

}
theory SemiGroup : FOL { i n c l ude Magma , . . . }
theory CommutativeGroup : FOL { i n c l ude SemiGroup , . . . }
theory Ring : FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}

MMT 11

Theories and Theory Morphisms

I Theories
I uniform representation of

I foundations e.g., logical frameworks, set theories, . . .
I logics, type theories
I domain theories e.g., algebra, arithmetic, . . .

I little theories: state every result in smallest possible theory
maximizes reuse

I Theory morphisms
I uniform representation of

I extension e.g., Monoid → Group
I inheritance e.g., superclass → subclass
I semantics e.g., FOL → ZFC
I models e.g., Nat: Monoid → ZFC
I implementation e.g., specification → programming language
I translation e.g., typed to untyped FOL
I functors e.g., output → input interface

I homomorphic translation of expressions
I preserve typing (and thus truth)

The LATIN Atlas 12

Large Scale Example: The LATIN Atlas

I DFG project 2009-2012 (with DFKI Bremen and Jacobs Univ.)
I Highly modular network of little logic formalizations

I separate theory for each
I connective/quantifier
I type operator
I controversial axioms e.g., excluded middle, choice, . . .
I base type

I reference catalog of standardized logics
I documentation platform

I Written in MMT/LF

I 4 years, with ∼ 10 students, ∼ 1000 modules

The LATIN Atlas 13

Logic Diagrams in LATIN
An example fragment of the LATIN logic diagram

I nodes: MMT/LF theories

I edges: MMT/LF theory morphisms

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL
MizarZFCIsabelle/HOL

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

I each node is root for library of that logic

I each edge yields library translation functor
library integration very difficult though

The LATIN Atlas 14

Current State

I Little theories including
I propositional, common, modal, description, linear logic,

unsorted/sorted/dependently-sorted first-order logic, CASL,
higher-order logic

I λ-calculi (λ-cube), product types, union types, . . .
I ZFC set theory, Mizar’s set theory, Isabelle/HOL
I category theory

I Little morphisms including
I relativization of quantifiers from sorted first-order, modal, and

description logics to unsorted first-order logic
I negative translation from classical to intuitionistic logic
I translation from type theory to set theory
I translations between ZFC, Mizar, Isabelle/HOL
I Curry-Howard correspondence between logic, type theory, and

category theory

Foundation-Independence 15

Logical Results Obtained at the MMT Level

I Module system
modularity transparent to foundation developer

I Concrete/abstract syntax
notation-based parsing/presentation

I Interpreted symbols, literals
external model/implementation reflected into Mmt

I Type reconstruction
foundation plugin supplies only core rules

I Simplification
rule-based, integrated with type reconstruction

I Theorem proving? very recent, ongoing

I Code generation? most likely

Foundation-Independence 16

Abstract Syntax

Key ideas

I no predefined constants

I very general term constructor

I c(Γ; ~E) binds variables and takes arguments
I non-binding operators: Γ empty e.g., apply(·; f , a) for LF’s f a

I typical binders: Γ and ~E have length 1
e.g., lambda(x :A; t) for LF’s λx :A.t

contexts Γ ::= (x [: E][= E])∗

terms E ::=
constants c
variables x
complex terms | c(Γ;E ∗)

MMT implements foundation-independent data structures for
theories and terms

Foundation-Independence 17

Concrete Syntax

I Notations of c introduce connect concrete syntax for c(Γ; ~E)

e.g., for LF

production MMT declaration abstract syntax

E ::=
type type # type

Πx : E1.E2 Pi # Π V1 . 2 Pi(x :E1;E2)
E1 → E2 arrow # 1 → 2 arrow(·;E1,E2)
λx : E1.E2 lambda # λ V1 . 2 lambda(x :E1;E2)
E1 E2 apply # 1 2 apply(·;E1,E2)

MMT implements foundation-independent parser and printers

Foundation-Independence 18

Inference System
For any theory Σ:

`Σ Γ Γ is a valid context

Γ `Σ t : A t has type A
Γ `Σ E = E ′ E and E ′ are equal
Γ `Σ : A A is inhabitable

MMT define some foundation-independent rules
I congruence rules for equality
I contexts

`Σ ·
`Σ Γ [Γ `Σ : A] [Γ `Σ t : A]

`Σ Γ, c[: A][= t]

I rules for atomic terms, e.g.

x : A in Γ

Γ `Σ x : A

x = t in Γ

Γ `Σ x = t

Foundation-specific rules for complex terms are
I declared in theories
I implemented by plugins

Foundation-Independence 19

Inference System: Implementation

MMT implements foundation-independent parts of type checker

I foundation-independent rules

I lookup in theories, context

I simplification, definition expansion

I error reporting

Foundation-specific rules supplied by plugins
I ∼ 8 abstract rules, e.g.,

I infer type
I check term at given type
I check equality of two given terms
I simplify a term

I each rule can recurse into other judgements

I plugins provide concrete instances

I Example LF: ∼ 10 rules for LF, ∼ 10 lines of code each

Foundation-Independence 20

Inference System: Type Reconstruction

Type Reconstruction
I Judgment with unknown meta-variables

I implicit arguments, type parameters
I omitted types of bound variables

I Goal: prove judgment and solve meta-variables

I Much harder than type checking requires delaying constraints

MMT implements foundation-independent type reconstruction

I transparent to foundations

I (almost) no extra cost for foundation developer
one additional rule for LF

Applications and Services 21

Application-Independence

I Practical logic-related systems often application-specific
I fixed functionality for fixed foundation

often: read-eval-print design
I many applications shallow, decay quickly

I MMT approach: application-independence

1. focus on API for MMT language
data structures and high-level interfaces

2. encapsulate advanced functionality in reusable services
e.g., theorem proving, search, . . .

3. allow plugin interfaces for customization
foundation-specific rules, parsers, change listeners, . . .

4. build lightweight applications on top IDE, library manager, . . .

Applications and Services 22

Knowledge Management Results at the MMT Levels

I Change management recheck only if affected

I Project management indexing, building

I Extensible export infrastructure
Scala, SVG graphs, LaTeX, HTML, . . .

I Search, querying substitution-tree and relational index

I Browser interactive web browser

I Editing IDE-like graphical interface

Applications and Services 23

IDE

I Inspired by programming language IDEs
I Components

I jEdit text editor (in Java): graphical interface
I MMT API (in Scala)
I jEdit plugin to tie them together

only ∼ 1000 lines of glue code

I Features
I outline view
I error list
I display of inferred information
I type inference of subterms
I hyperlinks: jump to definition
I search interface
I context-sensitive auto-completion: show identifiers that

Applications and Services 24

IDE: Example View

Applications and Services 25

An Interactive Library Browser

I MMT content presented as HTML5+MathML pages

I Dynamic page updates via Ajax

I MMT used through HTTP interface with JavaScript wrapper
I Features

I interactive display e.g., inferred types, redundant brackets
I smart navigation via MMT ontology

can be synchronized with jEdit
I dynamic computation of content

e.g., definition lookup, type inference
I graph view: theory diagram as SVG

Applications and Services 26

Browser: Example View

Applications and Services 27

Browser Features: 2-dimensional Notations

Applications and Services 28

Browser Features: Proof Trees

Applications and Services 29

Browser Features: Type Inferece

Applications and Services 30

Browser Features: Parsing

Applications and Services 31

Example Service: Search

Applications and Services 32

LATEXIntegration

I MMT declarations spliced into LATEX documents
shared MMT-LATEX knowledge space

I LATEX macros for MMT-HTTP interface
I Semantic processing of formulas

I parsing
I type checking
I semantic enrichment: cross-references, tooltips

I Design not LATEX-specific
e.g., integration with word processors possible

LATEXIntegration: Example
Inferred arguments are inserted during compilation:

I upper part: LATEX source for the item on associativity
I lower part: pdf after compiling with LATEX-MMT
I type argument M of equality symbol is inferred and added by

MMT

OAF: An Open Archive of Formalizations 34

Current Work: Library Integration
I Open Archive of Formalizations open PhD position!

Michael Kohlhase and myself, 2014-2017
I Goal: archival, comparison, integration of formal libraries

Mizar, HOL systems, IMPS, Coq/Matita, PVS, . . .
I Big, overlapping libraries – that are mutually incompatible

MMT

LF LF+X

LATIN logic library . . .HOL Light

HOL Light library Bool Arith
. . .

Mizar

Mizar library
XBoole XReal

. . .
Arith

. . .

OAF: An Open Archive of Formalizations 35

Goal: Universal Library Infrastructure

I MMT as representation language
I Repository backend: MathHub

I based on GitLab – open-source analog of GitHub server
I GitLab instance hosted at Jacobs University
I free registration of accounts, creation of repositories

I Generic library management
I browser
I inter-library navigation
I search
I change management

OAF: An Open Archive of Formalizations 36

Goal: Exports from Proof Assistants

I Export major libraries into MMT
I Representative initial targets

I Mizar: set theoretical initial export done (with Josef Urban)
I HOL Light: higher-order logic

initial export done (with Cezary Kaliszyk)
I Coq or Matita: type theoretical
I IMPS: little theories method
I PVS: rich foundational language

I Major technical difficulty
I exports must be written as part of proof assistant
I not all information available

OAF: An Open Archive of Formalizations 37

Goal: Towards Library Integration

I Refactor exports to introduce modularity
I 2 options

I systematically during export
e.g., one theory for every HOL type definition

I heuristic or interactive MMT-based refactoring

I Collect correspondences between concepts in different libraries
heuristically or interactively

I Relate isomorphic theories across languages

I Use partial morphisms to translate libraries

38

Conclusion

I MMT: general framework for declarative languages
I Foundation-independent representation language
I Application-independent implementation

I Easy to instantiate with specific foundations
rapid prototyping logic systems

I Multiple deep foundation-independent results
I logical: parsing, type reconstruction, module system, . . .
I knowledge management: search, browser, IDE, . . .

I MMT quite mature now, ready for larger applications
about to break even

I Interesting for
I new, changing foundations
I generic applications/services
I system integration/combination

39

Further Resources

Web sites

I MMT: https://svn.kwarc.info/repos/MMT/doc/html/index.html

I OAF web server (experimental): http://mathhub.info:8080/

Selected publications all available from https://kwarc.info/people/frabe

I the primary paper on the MMT language (I&C 2013, with M. Kohlhase):
A Scalable Module System

I a more recent paper on the MMT approach to logic (JLC 2014):
How to Identify, Translate, and Combine Logics?

I Foundations in LATIN: (MSCS 2011, with M. Iancu)
Formalizing Foundations of Mathematics

I Modular logics in LATIN (TCS 2011, with F. Horozal):
Representing Model Theory in a Type-Theoretical Logical Framework

I Mizar in OAF (JAR 2013, with M. Iancu, M. Kohlhase, J. Urban):
The Mizar Mathematical Library in OMDoc: Translation and Applications

I HOL Light in OAF: (CICM 2014, with C. Kaliszyk)
Towards Knowledge Management for HOL Light

https://svn.kwarc.info/repos/MMT/doc/html/index.html
http://mathhub.info:8080/
https://kwarc.info/people/frabe

	Motivation
	My Background
	Foundations
	Fixed Foundations

	MMT
	Overview
	The Meta-Meta-Logical Approach
	Foundation-Independence
	Foundation-Independence
	Basic Concepts
	Small Scale Example (1)
	Small Scale Example (2)
	Theories and Theory Morphisms

	The LATIN Atlas
	Large Scale Example: The LATIN Atlas
	Logic Diagrams in LATIN
	Current State

	Foundation-Independence
	Logical Results Obtained at the MMT Level
	Abstract Syntax
	Concrete Syntax
	Inference System
	Inference System: Implementation
	Inference System: Type Reconstruction

	Applications and Services
	Application-Independence
	Knowledge Management Results at the MMT Levels
	IDE
	IDE: Example View
	An Interactive Library Browser
	Browser: Example View
	Browser Features: 2-dimensional Notations
	Browser Features: Proof Trees
	Browser Features: Type Inferece
	Browser Features: Parsing
	Example Service: Search
	LaTeXIntegration
	LaTeXIntegration: Example

	OAF: An Open Archive of Formalizations
	Current Work: Library Integration
	Goal: Universal Library Infrastructure
	Goal: Exports from Proof Assistants
	Goal: Towards Library Integration
	Conclusion
	Further Resources

