Currently, there is only one refactoring tool, namely the “Generalizer”:
The “Generalizer” is a new component shipped with the release of MMT 16.0.0.
Example file for generalization:
http://cds.omdoc.org/theorysplittest/generalization/metricAndNormedSpaces?NormedVectorspaceThms
as the input theoryhttp://cds.omdoc.org/theorysplittest/generalization/metricAndNormedSpaces?NormedVectorspace
as the to-be-generalized parthttp://cds.omdoc.org/theorysplittest/generalization/metricAndNormedSpaces?MetricSpace
as the generalization of that parthttp://cds.omdoc.org/theorysplittest/generalization/metricAndNormedSpaces?NormedAsMetricSpaces
as the specialization morphismGeneralize
namespace http://cds.omdoc.org/theorysplittest/generalization/metricAndNormedSpaces❚ import base http://mathhub.info/MitM/Foundation❚ /T A theory extendinding MitM/Foundation's "Math" theory for some needed operators in the examples, namely < and ≥ on ℕ and ℝ.❚ theory OurMath : base:?Math = less_than_reals: ℝ ⟶ ℝ ⟶ prop❘ # 1 < 2❙ geq_nats: ℕ ⟶ ℕ ⟶ prop❘# 1 ≥ 2❙ ❚ theory MetricSpace : ?OurMath = X : type❙ d: X ⟶ X ⟶ ℝ❙ ❚ theory NormedVectorspace : ?OurMath = Y: type❙ norm: Y ⟶ ℝ❙ minus: Y ⟶ Y ⟶ Y ❘ # 1 - 2❙ ❚ view NormedAsMetricSpace : ?MetricSpace -> ?NormedVectorspace = X = Y❙ d = [a, b] norm (a - b)❙ ❚ theory NormedVectorspaceThms : ?OurMath = include ?NormedVectorspace❙ not_rewritable = [a] norm (a - a)❙ cauchy: (ℕ ⟶ Y) ⟶ prop ❘ = [f] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] ∀[m: ℕ] (n ≥ N ∧ m ≥ N) ⇒ ((norm ((f n) - (f m))) < ɛ)❙ convergent_to: (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘ = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] (n ≥ N) ⇒ ((norm ((f n) - y)) < ɛ)❙ f: ℕ ⟶ Y❙ f_is_cauchy: ⊦ cauchy f❙ my_y: Y❙ f_convergent: ⊦ convergent_to f my_y❙ in_ball: Y ⟶ Y ⟶ ℝ ⟶ prop ❘ = [y,center,radius] (norm (y - center)) < radius❙ /T Actually only for ɛ > 0❙ center_always_in_ball: ⊦ ∀[y: Y] ∀[ɛ: ℝ] in_ball y y ɛ❙ ball_convergent_to: (ℕ ⟶ Y) ⟶ Y ⟶ prop ❘ = [f, y] ∀[ɛ: ℝ] ∃[N: ℕ] ∀[n: ℕ] (n ≥ N) ⇒ in_ball (f n) y ɛ❙ decl_mentinioning_prev_decl_in_rewrite_spot: ℝ ❘ = norm (my_y - my_y)❙ rewrite_variable_name_clash_with_morphism: Y ⟶ Y ⟶ ℝ ❘ = [a, b] norm (a - b)❙ ❚